有一個序列 $A$ 長度為 $N(N \leq 3 \times 10^ 5)$
剛開始 $A_0 = 0, A_1 = 0,\ldots,A_{N-1} = 0$
接下來有 $M(M \leq 3 \times 10^ 5)$ 個操作
每個操作之間間隔一單位時間
時間由第一個操作算起
1 l r x
代表將 A[l, r] += x
$(0 \leq l \leq r < n)$, $|x| = 1$
2 x
代表詢問從開始到現在,有幾單位時間 $A_x$ 為 $0$, $(0 \leq x < n)$
保證在操作過程中,所有 $A$ 的元素皆不小於 $0$
第一行有兩個正整數 $N, M$
接下來有 $M$ 行,
每行皆有一筆操作,格式如上
對於每一筆操作請輸出一行整數代表答案
不要中毒 ><
by kevin_zhang
No. | Testdata Range | Constraints | Score |
---|---|---|---|
1 | 0~9 | $N, M \leq 5000$ | 15 |
2 | 0~29 | $N, M \leq 30000$ | 20 |
3 | 0~44 | no additional limits | 65 |
No. | Time Limit (ms) | Memory Limit (KiB) | Output Limit (KiB) | Subtasks |
---|---|---|---|---|
0 | 1000 | 65536 | 65536 | |
1 | 1000 | 65536 | 65536 | |
2 | 1000 | 65536 | 65536 | |
3 | 1000 | 65536 | 65536 | |
4 | 1000 | 65536 | 65536 | |
5 | 1000 | 65536 | 65536 | |
6 | 1000 | 65536 | 65536 | |
7 | 1000 | 65536 | 65536 | |
8 | 1000 | 65536 | 65536 | |
9 | 1000 | 65536 | 65536 | |
10 | 1000 | 65536 | 65536 | |
11 | 1000 | 65536 | 65536 | |
12 | 1000 | 65536 | 65536 | |
13 | 1000 | 65536 | 65536 | |
14 | 1000 | 65536 | 65536 | |
15 | 1000 | 65536 | 65536 | |
16 | 1000 | 65536 | 65536 | |
17 | 1000 | 65536 | 65536 | |
18 | 1000 | 65536 | 65536 | |
19 | 1000 | 65536 | 65536 | |
20 | 1000 | 65536 | 65536 | |
21 | 1000 | 65536 | 65536 | |
22 | 1000 | 65536 | 65536 | |
23 | 1000 | 65536 | 65536 | |
24 | 1000 | 65536 | 65536 | |
25 | 1000 | 65536 | 65536 | |
26 | 1000 | 65536 | 65536 | |
27 | 1000 | 65536 | 65536 | |
28 | 1000 | 65536 | 65536 | |
29 | 1000 | 65536 | 65536 | |
30 | 1000 | 65536 | 65536 | |
31 | 1000 | 65536 | 65536 | |
32 | 1000 | 65536 | 65536 | |
33 | 1000 | 65536 | 65536 | |
34 | 1000 | 65536 | 65536 | |
35 | 1000 | 65536 | 65536 | |
36 | 1000 | 65536 | 65536 | |
37 | 1000 | 65536 | 65536 | |
38 | 1000 | 65536 | 65536 | |
39 | 1000 | 65536 | 65536 | |
40 | 1000 | 65536 | 65536 | |
41 | 1000 | 65536 | 65536 | |
42 | 1000 | 65536 | 65536 | |
43 | 1000 | 65536 | 65536 | |
44 | 1000 | 65536 | 65536 |