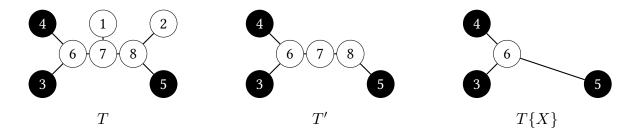
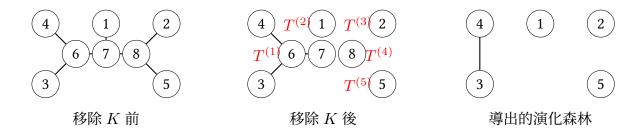
A. 演化樹分析 (Agreement)


問題描述

彼得是一位生物學家。有次他在兩筆資料中分析同一群現存物種集合 $\Sigma = \{1, 2, ..., n\}$ 間的演化關係,卻得到了不太一樣的演化樹,想知道這兩棵演化樹的類似程度。

一棵演化樹 T 是一棵無向無根樹 (undirected, unrooted tree),其中葉節點為現存物種 $1,2,\ldots,n$,其他節點則為已滅絕物種。設 $v \in V(T)$,我們用 $\deg(v)$ 來表示與節點 v 相鄰的節點個數。在一棵演化樹中,每個代表已滅絕物種的節點 v 均有 $\deg(v) \geq 3$ 。對於一個現存物種的子集合 $X \subseteq \Sigma$,我們用 $T\{X\}$ 來代表 X 中的現存物種在 T 上的演化關係所形成的「演化子樹」,建構方式如下:

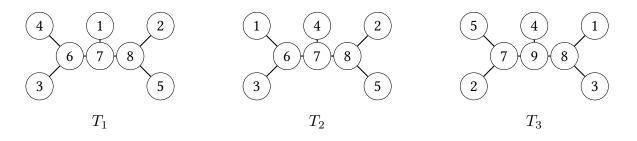
- 1. 對所有 X 中的任兩點,標記其在 T 上的簡單路徑,並將所有不在 X 且未被標記的點刪除以得到 T'。
- 2. 從 T' 中不斷刪除滿足 $\deg(v)=2$ 的非葉節點 v 以得到 $T\{X\}$:將與 v 連結的兩條邊合併成 一條,並移除 v。


以下圖的演化樹 T 為例。T 裡的現存物種集合為 $\Sigma = \{1, 2, 3, 4, 5\}$,若取 $X = \{3, 4, 5\}$,則經步驟 1 後會得到 T',再經過步驟 2 後會得到 $T\{X\}$ 。注意當 $X = \emptyset$ 時,根據定義我們有 $T\{X\} = \emptyset$ 。

從一棵演化樹 T 中移除大小為 $k \geq 0$ 的任意邊集合 K, 可以得到 k+1 棵子樹 $T^{(1)}, T^{(2)}, \ldots, T^{(k+1)}$, 其中每棵子樹 $T^{(i)}$ 上的物種在 T 中的演化關係都會構成一棵**演化子樹**,我們稱它們為從 T 中移除 K 所導出的**演化森林**。注意我們有

- 1. T 自身為移除 ∅ 後導出的演化森林。
- 2. 若一棵子樹 $T^{(i)}$ 上沒有任何現存物種,對應的演化子樹為空。

以上圖中的 T 為例,移除 $K = \{(1,7),(7,8),(2,8),(5,8)\}$ 四條邊可以得到五棵子樹 $T^{(1)},T^{(2)},\ldots,T^{(5)}$,接著導出演化森林:



比較兩座現存物種相同的演化森林時,我們只關注現存物種間的關係,因此已滅絕物種(即非葉節點)的編號並不重要。設 F_1 與 F_2 為兩座現存物種相同的演化森林,若移除它們的非葉節點編號後變得完全相同,我們就稱 F_1 與 F_2 類似。更精確地說,我們稱 F_1 與 F_2 類似,若且唯若存在某個一對一函數 $\Phi:V(F_1)\to V(F_2)$,滿足


- 1. 對任意 $u \in \Sigma = \{1, 2, ..., n\}$, 我們有 $\Phi(u) = u$ 。
- 2. 對任意 $u, v \in V(F_1)$, 我們有

$$(u,v) \in E(F_1) \iff (\Phi(u),\Phi(v)) \in E(F_2).$$

以下圖為例,如果將 T_1,T_2,T_3 的非葉節點編號都移除,會發現 T_1 與 T_2 不類似,而 T_2 與 T_3 類似。

設 T_1 與 T_2 為現存物種相同的兩棵演化樹。若存在從 T_1 與 T_2 中各刪除 k 條邊的方法,使得兩者導出的演化森林類似,則稱 T_1 與 T_2 的差異不大於 k,而滿足此條件的最小整數 k^* 稱為 T_1 與 T_2 的**差異數**。如上圖中 T_2 與 T_3 的差異數為 T_1 與 T_2 的差異數為 T_2 的

2023 年全國資訊學科能力競賽

設從 T_1 與 T_2 中刪除的邊集合分別為 K_1 與 K_2 ,兩種刪除方法被視為不同若且唯若 K_1 不同或 K_2 不同。現給定兩棵物種集合均為 Σ 的演化樹 T_1, T_2 以及一個整數上限 k,彼得想知道它們的差異數 k^* 是否不大於 k;如果 $1 \le k^* \le k$,彼得也想知道有多少種從 T_1 和 T_2 中各刪除 k^* 條邊的方法,可以使它們導出類似的演化森林。

輸入格式

- n 代表現存物種集合 $\Sigma = \{1, 2, ..., n\}$ 的大小。
- m_1 代表在 T_1 中已滅絕物種(以 $n+1, n+2, ..., n+m_1$ 表示)的數量。
- m_2 代表在 T_2 中已滅絕物種(以 $n+1, n+2, ..., n+m_2$ 表示)的數量。
- k 代表彼得設定的上限。
- u_i, v_i 代表 T_1 有一條邊從 u_i 連接到 v_i 。
- u_i', v_i' 代表 T_2 有一條邊從 u_i' 連接到 v_i' 。

輸出格式

如果 $k^* = 0$,請輸出

0

如果 $1 < k^* < k$, 請輸出

```
egin{array}{c} k^* \ S \end{array}
```

其中 S 為一整數,代表從 T_1 與 T_2 中各刪除 k^* 條邊後導出的演化森林類似的刪除方法數。如果 $k^* > k$,請輸出

-1

2023 年全國資訊學科能力競賽

測資限制

- $n \geq 2_{\circ}$
- $0 \le m_1 \le 300 n_{\circ}$
- $0 \le m_2 \le 300 n_0$
- $k \in \{0, 1, 2\}_{\circ}$
- $1 \le u_i \le n + m_{1^{\circ}}$
- $1 \le v_i \le n + m_{1\circ}$
- $1 \le u_i' \le n + m_{2\circ}$
- $1 \le v_i' \le n + m_{2\circ}$
- 給定的 T_1 與 T_2 保證連通,且
 - 1. 若 $u \in \{1, 2, ..., n\}$, 則在 T_1 與 T_2 中 $\deg(u) = 1$ 。
 - 2. 若 $u \in \{n+1, n+2, \dots, n+m_1\}$, 則在 $T_1 + \deg(u) \ge 3$ 。
 - 3. 若 $u \in \{n+1, n+2, \dots, n+m_2\}$, 則在 $T_2 \oplus \deg(u) \ge 3$ 。
- 輸入的數皆為整數。

範例測試

Sample Input	Sample Output
5 3 3 2 1 7 2 8 3 6 4 6 5 8 6 7 7 8 1 6 2 8 3 6 4 7 5 8 6 7 7 8	1 4
4 2 2 0 1 5 2 5 3 6 4 6 5 6 1 6 2 6 3 5 4 5 5 6	0
6 3 3 2 1 7 2 7 3 7 4 8 5 9 6 9 7 8 8 9 1 7 2 7 3 9 4 9 5 8 6 8 7 8 8 9	2 9

6 1 4 2	-1
1 7	
2 7	
3 7	
4 7	
5 7	
6 7	
1 7	
2 7	
3 8 4 8	
4 8	
5 9	
6 9	
7 10	
8 10	
9 10	
	I

評分說明

本題共有四組子任務,條件限制如下所示。每一組可有一或多筆測試資料,該組所有測試資料皆需答對才會獲得該組分數。

子任務	分數	額外輸入限制
1	21	k = 0
2	13	$k \in \{0, 1\}$
3	23	$n + m_1 \le 30 \perp n + m_2 \le 30$
4	43	無額外限制