std::asin(std::complex)
From cppreference.com
Defined in header <complex>
|
||
template< class T > complex<T> asin( const complex<T>& z ); |
(since C++11) | |
Computes complex arc sine of a complex value z
. Branch cut exists outside the interval [−1 ; +1] along the real axis.
Parameters
z | - | complex value |
Return value
If no errors occur, complex arc sine of z
is returned, in the range of a strip unbounded along the imaginary axis and in the interval [−π/2; +π/2] along the real axis.
Errors and special cases are handled as if the operation is implemented by -i * std::asinh(i*z)
, where i
is the imaginary unit.
Notes
Inverse sine (or arc sine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc sine is asin z = -iln(iz + √1-z2
)
π |
2 |
Example
Run this code
#include <iostream> #include <cmath> #include <complex> int main() { std::cout << std::fixed; std::complex<double> z1(-2, 0); std::cout << "acos" << z1 << " = " << std::acos(z1) << '\n'; std::complex<double> z2(-2, -0.0); std::cout << "acos" << z2 << " (the other side of the cut) = " << std::acos(z2) << '\n'; // for any z, acos(z) = pi - acos(-z) const double pi = std::acos(-1); std::complex<double> z3 = pi - std::acos(z2); std::cout << "cos(pi - acos" << z2 << ") = " << std::cos(z3) << '\n'; }
Output:
asin(-2.000000,0.000000) = (-1.570796,1.316958) asin(-2.000000,-0.000000) (the other side of the cut) = (-1.570796,-1.316958) sin(acos(-2.000000,-0.000000) - pi/2) = (-2.000000,-0.000000)
See also
(C++11) |
computes arc cosine of a complex number (arccos(z)) (function template) |
(C++11) |
computes arc tangent of a complex number (arctan(z)) (function template) |
computes sine of a complex number (sin(z)) (function template) | |
(C++11)(C++11) |
computes arc sine (arcsin(x)) (function) |
applies the function std::asin to each element of valarray (function template) |