csinhf, csinh, csinhl
From cppreference.com
Defined in header <complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header <tgmath.h>
|
||
#define sinh( z ) |
(4) | (since C99) |
1-3) Computes the complex hyperbolic sine of
z
.4) Type-generic macro: If
z
has type long double complex, csinhl
is called. if z
has type double complex, csinh
is called, if z
has type float complex, csinhf
is called. If z
is real or integer, then the macro invokes the corresponding real function (sinhf, sinh, sinhl). If z
is imaginary, then the macro invokes the corresponding real version of the function sin, implementing the formula sinh(iy) = i sin(y), and the return type is imaginary.Parameters
z | - | complex argument |
Return value
If no errors occur, complex hyperbolic sine of z
is returned
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- csinh(conj(z)) == conj(csinh(z))
- csinh(z) == -csinh(-z)
- If
z
is+0+0i
, the result is+0+0i
- If
z
is+0+∞i
, the result is±0+NaNi
(the sign of the real part is unspecified) and FE_INVALID is raised - If
z
is+0+NaNi
, the result is±0+NaNi
- If
z
isx+∞i
(for any positive finite x), the result isNaN+NaNi
and FE_INVALID is raised - If
z
isx+NaNi
(for any positive finite x), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is+∞+yi
(for any positive finite y), the result is+∞cis(y)
- If
z
is+∞+∞i
, the result is±∞+NaNi
(the sign of the real part is unspecified) and FE_INVALID is raised - If
z
is+∞+NaNi
, the result is±∞+NaNi
(the sign of the real part is unspecified) - If
z
isNaN+0i
, the result isNaN+0i
- If
z
isNaN+yi
(for any finite nonzero y), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where cis(y) is cos(y) + i sin(y)
Notes
Mathematical definition of hyperbolic sine is sinh z =ez -e-z |
2 |
Hyperbolic sine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi
Example
Run this code
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = csinh(1); // behaves like real sinh along the real line printf("sinh(1+0i) = %f%+fi (sinh(1)=%f)\n", creal(z), cimag(z), sinh(1)); double complex z2 = csinh(I); // behaves like sine along the imaginary line printf("sinh(0+1i) = %f%+fi ( sin(1)=%f)\n", creal(z2), cimag(z2), sin(1)); }
Output:
sinh(1+0i) = 1.175201+0.000000i (sinh(1)=1.175201) sinh(0+1i) = 0.000000+0.841471i ( sin(1)=0.841471)
References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.6.5 The csinh functions (p: 194)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.2.5 The csinh functions (p: 541-542)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.6.5 The csinh functions (p: 175-176)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.2.5 The csinh functions (p: 476-477)
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)(C99)(C99) |
computes the complex hyperbolic cosine (function) |
(C99)(C99)(C99) |
computes the complex hyperbolic tangent (function) |
(C99)(C99)(C99) |
computes the complex arc hyperbolic sine (function) |
(C99)(C99) |
computes hyperbolic sine (sh(x)) (function) |