std::sqrt(std::complex)
From cppreference.com
Defined in header <complex>
|
||
template< class T > complex<T> sqrt( const complex<T>& z ); |
||
Computes the square root of the complex number z
with a branch cut along the negative real axis.
Parameters
z | - | complex number to take the square root of |
Return value
If no errors occur, returns the square root of z
, in the range of the right half-plane, including the imaginary axis ([0; +∞) along the real axis and (−∞; +∞) along the imaginary axis.)
If the argument is a negative real number, the result lies on the positive imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- The function is continuous onto the branch cut taking into account the sign of imaginary part
- std::sqrt(std::conj(z)) == std::conj(std::sqrt(z))
- If
z
is(±0,+0)
, the result is(+0,+0)
- If
z
is(x,+∞)
, the result is(+∞,+∞)
even if x is NaN - If
z
is(x,NaN)
, the result is(NaN,NaN)
(unless x is ±∞) and FE_INVALID may be raised - If
z
is(-∞,y)
, the result is(+0,+∞)
for finite positive y - If
z
is(+∞,y)
, the result is(+∞,+0)
for finite positive y - If
z
is(-∞,NaN)
, the result is(NaN,∞)
(sign of imaginary part unspecified) - If
z
is(+∞,NaN)
, the result is(+∞,NaN)
- If
z
is(NaN,y)
, the result is(NaN,NaN)
and FE_INVALID may be raised - If
z
is(NaN,NaN)
, the result is(NaN,NaN)
Example
Run this code
#include <iostream> #include <complex> int main() { std::cout << "Square root of -4 is " << std::sqrt(std::complex<double>(-4, 0)) << '\n' << "Square root of (-4,-0), the other side of the cut, is " << std::sqrt(std::complex<double>(-4, -0.0)) << '\n'; }
Output:
Square root of -4 is (0,2) Square root of (-4,-0), the other side of the cut, is (0,-2)
See also
complex power, one or both arguments may be a complex number (function template) | |
computes square root (√x) (function) | |
applies the function std::sqrt to each element of valarray (function template) | |
C documentation for csqrt
|